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A numerical program is developed to simulate an assembly of inelastic frictional 
spheres inside a control volume undergoing rapid shearing motion induced by the top 
and bottom moving periodic boundaries. A sticking-sliding collision model is used to 
emulate binary collisions of real particles. After the flow has reached a steady state, 
ensemble averages of macroscopic properties such as translational and rotational 
granular temperatures, and kinetic and collisional stresses at different solids 
concentrations are obtained. The present results are compared with previous 
theoretical, numerical and experimental works, and favourable agreement is found 
among them. The simulation results show that the stresses are anisotropic and decrease 
with decreasing coefficient of restitution and increasing friction coefficient. At high 
solids fraction, above about 0.5, there exists a critical concentration where the layering 
effects of particles, the formation of high-density microstructures and the increase in 
correlation of particle velocities are the major causes of abrupt changes in flow 
properties. 

1. Introduction 
In the past decade or so, a number of experimental investigations, theoretical 

analyses and computer simulations have contributed towards the fundamental 
understanding of governing mechanisms for rapid granular flows. Although each 
approach has its own advantages and limitations, together they help to enrich our 
knowledge of the subject, which is of crucial importance in a wide variety of industrial, 
geophysical and scientific applications. The subject has recently been reviewed by a 
number of researchers such as Savage (1989, 1993), Campbell (1986, 1990), Jenkins 
(1987) and Richman (1986). 

One of the limitations of laboratory experiments is that it is rather difficult to 
develop instrumentation that is capable of measuring flow properties such as velocity, 
density and granular temperature profiles inside the granular material without 
disturbing the flow field. Nonetheless, valuable information on stresses at relatively 
high solids concentrations and shear rates has been obtained from annular shear cell 
experiments (Savage & Sayed 1984: Hanes & Inman 1985; Craig, Buckholz & Domoto 
1986, 1987). 

Following the approaches of molecular dynamics and Monte Carlo methods, 
computer simulations of rapid granular flows have become excellent tools to provide 
detail information about the basic flow mechanics, which otherwise might be difficult 
to obtain in physical experiments. The present study focuses on the simulation of 
idealized inelastic frictional spheres in simple shear flow. We follow the deterministic 
approach of molecular dynamics in which the particle positions and velocities are 
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known at all times. Ensemble averages of macroscopic properties are obtained after the 
flow has reached a steady state. The results are compared with previous theoretical, 
numerical and experimental works. 

2. Collision model 
Consider a collision between two inelastic frictional spherical particles 1 and 2 each 

of diameter CT and having translational velocities c, and c,, angular velocities w, and 
w,, respectively. The total relative velocity, g12, at contact point just prior to the 
collision is 

(2.1) g,, = c12 - i a k  x 0, 

where c12 = c1 - e2 and Q = w1 + w2.  According to the collision model proposed by 
Lun & Savage (1987) and Lun (l991), the components of g,, are changed in a collision 
such that 

(2.2a, h) 

where k is the unit vector along the centreline from particle 1 to particle 2, primed 
quantities denote post-collisional values, e is the usual coefficient of restitution in the 
normal direction, and B may be called the coefficient of restitution in the tangential 
direction at the point of contact. For brevity, e and /3 will be called the normal and 
tangential coefficients of restitution respectively. 

Using (2.2a, h) in (2.1) the relationships between the pre- and post-collisional 
velocities can be written as 

k - g;2 = - 4 k  * g1J7 k x g;, = -P(k x g , J ,  

and 

where rn is the mass of a particle, J i s  the impulse, 7 ,  = +( 1 + e) ,  qz = f( 1 +,!I) K/(  1 + K ) ,  
and K = 41/(nm2) is a non-dimensional moment-of-inertia parameter. For a uniform 
solid sphere K =  $, and for a solid disk K =  i. 

From physical considerations, experimental evidence and theoretical analysis of 
friction surface deformations (Goldsmith 1960; Maw, Baber & Fawcett 1976, 1981), it 
is apparent that the normal coefficient of restitution, e ,  depends on the inelasticity and 
impact velocity in the normal direction whereas the tangential coefficient of restitution, 
p ,  depends on the tangential inelasticity, particle surface friction and impact velocity. 
In general, e decreases with increasing normal impact velocity. According to Maw 
et al., there can be no slip, micro slip or complete slip in the contact zone of the colliding 
spheres (see also Johnson 1982). As a result, /3 can be either positive or negative. 

In general, the coefficients e,  and p can have values in the ranges 0 d e d 1 and 
- 1 < p < 1. The value of p = - 1 represents perfectly smooth particles, whereas 
/3 = 1 corresponds to perfectly elastic, perfectly rough ones. Campbell (1989) used 
p = 0, which depicted particles with infinite friction, in his numerical simulation model. 
Depending upon the impact velocities and the material properties, the tangential 
coefficient of restitution can change significantly. The actual collision process is rather 
complex, for it involves elastic-plastic deformation in the vicinity of the contact zone 
and wave propagation inside the material. For simplicity, an idealized sticking-sliding 
collision model is employed in the present study in which instantaneous binary 
collisions are assumed. 

J = mr/,g12 + 4% - 7 2 )  k(k - g,,), (2.5) 
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FIGURE 1 .  Variations of non-dimensional tangential rebound velocity, d/*, with tangential incident 
velocity, $,. Comparison of predictions from equations (2.1 1) for sticking contact and (2.12) for 
sliding contact (solid lines) with experimental measurements of Maw (1976) using steel pucks of 
diameters: 0, 3 in;  a, 4 in. 

In oblique impacts, the normal and tangential impulses at the contact point are 
assumed to obey the Coulomb law of friction. In the case of the tangential impulse 
being less than the product of the friction coefficient and the normal impulse, i.e. 
Ik x JI < plk - JI, sticking or no-slip contact occurs. From (2.2a, b), the post-collisional 
normal relative velocity, Vk, and the surface tangential relative velocity, V:, are simply 
given by 

Vk=-eV,, V : = - p  V (2.6a, b) 0 8 )  

where Po is regarded as a phenomenological constant characterizing the restitution of 
velocity in the tangential direction for sticking contacts, and in general, 0 < Po < 1. 
Positive Po denotes particles rebounding with reverse spin caused by the restoration of 
elastic energy in the tangential direction. Both e and Po are considered to be constant 
coefficients which have been averaged over particle impact velocity and are appropriate 
for a particular range of granular temperatures. 

On the other hand, when the tangential impulse is greater than or equal to the 
product of the friction coefficient and the normal impulse, sliding contact occurs and 
the following equality applies : 

Ik x JI = plk - JI. (2.7) 

From (2.5) and (2.7), the tangential coefficient of restitution is found explicitly as 

= - 1 +p(1 + e ) ( l +  1/K) V,/V,; (2.8) 

thus from (2.2h) we have 
v; = -pv,. 

In their kinetic theories for rough inelastic spheres, Lun & Savage (1987) and Lun 
(1991) regarded the tangential coefficient of restitution, /3, as merely a constant 
averaged over the entire range of sticking and sliding contracts. Nakagawa (1988) used 
a collision model similar to the present one in his kinetic theory for disks in which the 
rebound tangential relative velocity for all sticking contact was assumed to be zero, i.e. 
Po = 0. Walton (1988) employed essentially the same collision model as the present one 



338 C. K. K. Lun and A .  A .  Bent 

in his numerical simulations in which the effect of particle surface friction on stresses 
was studied by fixing /lo and varying ,u from zero to unity. 

Maw (1976) and Maw et al. (1 98 1) performed experiments to measure the rotational 
and translational velocities of steel pucks before and after impact with fixed blocks of 
similar material. The steel pucks were symmetrically sliced by spark erosion from 
commercial ball bearings. A friction coefficient of 0.123 was measured for the steel 
pucks by using an inclined plane. The range of coefficient of restitution obtained in the 
experiments was 0.87 < e < 0.99 and the mean value was 0.93. 

The experimental results may be presented in terms of non-dimensional pre- and 
post-collisional tangential velocities, defined as 

$1 = K I V , ,  $2 = - %/K. (2.10a, b) 

(2.11) 

By using (2.2a, b) and (2.8)-(2.10~, b), the sticking contact solution gives 

$2 = - P o  $1 

$2 = (I.1 -A1 +e)U + 1 / 0  

while the sliding contact solution yields 

(2.12) 

In figure 1, predictions from (2.1 1) and (2.12) are compared with the measurements 
of Maw (1976). The value of / lo  for steel is found to be about 0.4 by averaging the slopes 
of the data points in the sticking contact region. The mean value of e = 0.93 is used in 
the computations. In general, there is reasonable agreement between the predictions 
and the test data. Perhaps one weakness of the present model is that the transition from 
sticking to sliding occurs rather abruptly as compared to the real case. Nonetheless, the 
model is simple and yields reasonable results. 

3. Simple shear flow 
A numerical model is developed to simulate shear flow of hard spheres with mean 

velocity of u = u(y)e , .  Shearing of bulk material inside a control volume is achieved 
by means of periodic image cells moving with velocities + Ue, on the top and - Ue, 
on the bottom of the control volume. When a particle leaves the bottom, it re-enters 
the control volume with an increase in velocity of Ue, through the top at a position 
determined by its image in the upper image cell. A similar reassignment of velocity and 
position is applied to particles that leave the top and re-enter the bottom. Each side of 
the control volume is bounded by a periodic stationary image cell. Such an 
arrangement for the control volume and its images has become a standard model to 
imitate the case of simple shear flow (see, for example, Lees & Edwards 1972; Walton 
& Braun 1986a, b; Allen & Tildesley 1987; Campbell 1989). 

In shearing flows, energy and momentum are transferred by means of interparticle 
collisions and the kinetic motion of an individual particle. The rate of work done on 
the bulk solids by the moving boundaries in simple shear flow is balanced by the 
collisional rate of energy dissipation through particle inelasticity and surface friction. 
As a result, the flow can reach a steady state in which the dynamic properties such as 
rotational and translational granular temperatures have unique values. 

Particles are initially arranged in an array of face-centred-cubic (FCC) lattices inside 
a control volume. Such an arrangement can provide a maximum solids fraction of 0.74. 
Solids fraction is defined as the ratio of the volume occupied by the solids to the total 
volume. Because the assumption of instantaneous binary collisions can break down at 
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high concentrations, the maximum solids fraction that can be sheared in the present 
model is found to be about 0.65 for particles with e = 0.95. Depending on whether the 
solids fraction is less or greater than 0.35, the present computer code generates a 
control volume having 81 particles in an initial 3 x 9 x 3 FCC array or 144 particles in 
a 4 x 8 x 4 FCC array (referring to the number of particles in the x-, y- ,  and z-directions 
respectively). The main reason for using two different total numbers of particles is to 
reduce computation time. 

Each particle is initiated with an instantaneous translational velocity composed of a 
random component C and a mean component according to a linear velocity profile, i.e. 
u = (U/H)ye, ,  where H is the height of the control volume. The magnitude of the 
fluctuating- velocity is initially equated to the 'thermal' speed of the bulk solids, i.e. 
C = (37'&; Ts is the initial mean translational granular temperature and can be set 
arbitrarily. The three directions of the fluctuation velocity for each particle are 
randomly assigned. In the present study, high Ti is used for all simulations unless 
specified otherwise. 

Once Ti is chosen, the simulation may begin. The computer program selects 
consecutively one particle at a time from a particle list and searches for potential 
colliding partners from the rest. Only particles that are located within the nearest 
neighbourhood of the chosen particle are considered for possible interactions. The 
program then determines the time 6t for each possible binary collision by using an 
elementary kinematic equation of motion. Each pair of potential colliding partners and 
its St  value are recorded in chronological order on a collisional list and a time list 
respectively. The length of the collisional and time lists can vary depending on the 
solids concentration in the system; for moderate solids fraction, the typical list length 
is about 100. After each particle in the particle list has been selected, the flow time is 
incremented by the time taken for the first collision and all particle velocities and 
positions are updated. The transfer of linear and angular momentum in each collision 
is recorded for statistical averaging. The collided pair and their potential colliding 
partners are registered in a check list after they are removed from the collisional list. 
Each particle in the check list is selected for the search of colliding partners and each 
potential colliding pair is inserted into the collisional list according to its time for 
collision. After the check list is exhausted, the flow time is incremented again. The 
process is repeated until a prescribed number of collisions per particle for ending the 
simulation is reached. Depending on the initial condition, convergence to a steady state 
normally occurs at about 500 collisions per particle. After steady state is reached, 
ensemble averages for flow properties are taken at intervals of 200, 500 or sometimes 
2000 collisions per particle. No significant difference in the result is found by varying 
the size of the ensemble provided that it is statistically sufficiently large. Each 
simulation run is performed up to a minimum of 3000, and in some cases 4000, 
collisions per particle. 

The control volume is partitioned into i strips with equal dimensions. On the basis 
of the statistical integrals of transport properties provided by the kinetic theories (e.g. 
Lun 199 l), one can deduce an equivalent set of discrete non-dimensional formulae for 
determining the distribution of properties such as mean velocity, granular temperature 
and stresses in the system. Let = &/r3 be the non-dimensional volume of the ith 
strip and Ni be the total number of particles in it. The non-dimensional quantities such 
as solids fraction Y, mean velocity E = u/U,  mean particle spin a0 = w o / ( U / r ) ,  
translational temperature = T / V ,  rotational temperatures = TJV, kinetic 
stresses Pk = P,/[p,(rU/H)'], collisional stresses = P , / ~ , ( C T U / H ) ~ ] ,  kinetic angular 
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momentum fluxes Lk = Lk/bp C T ~ ( U / H ) ~ ]  and collisional angular momentum fluxes 
ic = L,/b, CT’(U/H)’] may be exprcssed as 

v l  = x N i / 6 6 ,  (3.1) 

where p p  is the particle mass density, the index i denotes the ith strip, C, represents 
the sum over all particles within the strip and J is the non-dimensional impulse 
transmitted during a binary collision. The non-dimensional fluctuating linear velocity, 
fluctuating angular velocity, impulse and incremental time are defined as C = C / U ,  
W = ( o - o w o ) / U ,  J =  J / ( m U )  and Z = St U/CT respectively. The total stresses are 
P = P, + e, while the total angular momentum fluxes are L = f k  + f c .  

Note that the mean velocity in (3.2), mean particle spin (3.3), and translational and 
rotational granular temperature in (3.4) and (3.5) involve arithmetic means whereas the 
solids fraction in (3.1), kinetic stresses in (3.6), and kinetic angular momentum fluxes 
in (3.8) require volume averaging. The collisional stresses in (3.7) and collisional 
angular momentum flux in (3.9) need both volume and time averaging. To be 
consistent with the kinetic theory, the properties of an individual flow particle are 
assigned to the strip where the particle centre is found. The position of the impulse 
action in a collision is designated at the contact point of the colliding pair of flow 
particles in evaluating the collisional stresses in (3.7) and collisional angular momentum 
flux in (3.9). In other words, the change of momentum during a binary collision is 
attributed to the strip where the contact point occurs. Since all positions within the 
control volume in the simple shear simulations are equally probable in terms of 
accessibility by the particle centres and the contact points of the particle collisions, the 
volumes 6 used for averaging the solids fraction, kinetic and collisional stresses, and 
kinetic and collisional angular momentum fluxes are simply equal to the constant 
volume of the strip itself. 
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The computer program constantly checks for particle overlaps by determining the 
distance between each pair of particle centres, which must be no less one particle 
diameter c/. A tolerance of 1.0 x 10-15a is set in the computation to accommodate 
possible roundoff error in the numerical functions for the double-precision real 
numbers used. Furthermore, the transport properties and flow time are monitored 
periodically in each computation run. If particle overlaps did occur, the flow time 
would probably advance extremely slowly even after thousands of collisions per 
particle. All the results presented herein are free of ‘particle overlaps’. 

Typically, the simulation program running in a 286-PC with a Microway Number 
Smasher-860-40 MHz coprocessor board takes about 2 to 3 hours of real time to finish 
3000 collisions per particle for systems with 81 to 144 particles. 

4. Comparisons with previous works 
In this section, we study the effects of normal and tangential coefficients of 

restitution, friction coefficient, solids fraction, dimensions of the control volume and 
initial translational granular temperature on flow properties such as stresses, 
temperatures and mean particle spin. The present results are compared with those 
obtained in the numerical simulations of Walton & Braun (1986a) and Campbell 
(1989), the experimental measurements of Craig et al. (1986), and the theoretical 
predictions of Lun (1991). 

Figures 2 and 3 show the variations of non-dimensional stresses (namely three 
normal stresses, PXx, F&, ei,,, and one shear stress, lP,,l) with solids fraction, v, for cases 
of perfectly smooth spheres (i.e. ,5’= - 1) with e = 0.95, 0.8 and 0.6. Substantial 
agreement is found between the present results, those of Walton & Braun (1986a) and 
the predictions of Lun (1991). The theoretical results obtained by Lun are identical 
with those of Lun et al. (1984) and Jenkins & Richman (1985) for the case of perfectly 
smooth spheres. 

The radial distribution function at contact given by Carnahan & Starling (1969), i.e. 
go = (2 - v)/[2( 1 - v ) ~ ] ,  is used in the computations of Lun instead of the one originally 
proposed by Lun & Savage (1987), i.e. g; = (1 - v / v  m ) - - 2 5 u w h ;  where v m  represents the 
maximum possible solids fraction of the system. The go of Carnahan & Starling was 
formulated based upon molecular dynamics studies of virial expansions under 
equilibrium conditions and with the use of periodic boundaries. Its predictions are 
consistent with numerical results for solids fraction up to about 0.55. 

On the other hand, Lun & Savage (1986) propose the ad hoc equation for gh 
which contains the parameters V ,  to account for the finite-size effect of real granular 
systems which arises partly from the finite geometric constraints imposed by the solid 
boundaries on the flow particles and partly from the finite size of the particles 
themselves. Depending on the relative sizes of the particles and the shear zone inside 
the annulus of the shear cells, the value of v, can be as low as about 0.55. As the solids 
fraction of the system approached v,, the stresses increased rapidly with small increment 
of solids fraction (e.g. Hanes & Inman 1985; Craig et al. 1986; Savage & Sayed 1984). 
By using equation for gh, the theoretical predictions do exhibit to some degree the kind 
of behaviour of stresses observed in the experiments as v approaches v,. However, we 
should keep in mind that the kinetic theory of Lun (1991) has not incorporated 
phenomena such as multiple particle contacts, microstructures and particle layering 
effects which can strongly influence the stresses at high solids concentrations. In a 
recent numerical simulation, Savage (1992) used a Couette cell bounded by four 
periodic stationary sidewalls, along with top and bottom bumpy walls. He found quite 
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FIGURE 2. Non-dimensional (a) normal stresses and (b) shear stress versus solids fraction v for simple 
shear flow. Comparison of present results for perfectly smooth spheres having e = 0.95 and 0.6 
(0, Pzz; 0, cy; D, ex; 4, IPJ) with predictions of Lun (1991) (solid curves) and results of Walton 
8~ Braun (1986) (+, Pzz; 0,  Puu; 4, lPul). 
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FIGURE 3. As figure 2, but for e = 0.8. 

the opposite behaviour of stresses at high solids fractions with shear gap height 
H = 4cr: the stresses actually decreased with increasing v. This shows that the rapid 
increase of stresses at high solids fractions is perhaps not unique, as one might have 
thought. In the present study, since we are using periodic boundaries on all sides, the 
control volume may be viewed as a small region within an infinite medium under 
simple shearing motion. The kind of finite-size effect imposed by the solids boundaries 
on the flow field is absent. Therefore, it seems more appropriate to use go rather than 
gh for comparisons between the predictions of the kinetic theory and the present 
simulation results. 

In general the normal stresses are anisotropic (figures 2 and 3); the anisotropy in 
stresses increases with decreasing e. Since the theory of Lun (1991) assumes isotropic 
granular temperature distributions, it predicts isotropic stresses. Nevertheless, the 
predictions compare reasonably well with the majority of the simulation results. 
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FIGURE 4. Non-dimensional (a, b, c) normal stresses and ( d )  shear stress versus solids fraction v for 
simple shear flow. Comparison of present results for smooth spheres having e = 0.8 and initial control 
volumes in FCC arrays of 6 x  6 x 4 (a, high Kt; V, low Q, 4 x 9 x 4 (0, high q8, 0, low Q, and 
4 x 12 x 4 (D, high qt; 4, low TJ with predictions of Lun (1991) (solid curves). 

Richman (1989) and Walton, Kim & Rosato (1991) had investigated the phenomenon 
of stress anisotropy in the simple shear flow of smooth inelastic spheres by using kinetic 
theory and computer simulation respectively. 

As shown in figures 2 and 3, the present results for stresses show first a decrease with 
increasing concentration to a minimum, and thereafter an increase with increasing 
concentration up to about 0.5. With further increase of Y ,  a couple of interesting 
phenomena occur. First, the present stresses suddenly decrease and then increase 
again with increasing v. Secondly, at low concentrations ez is somewhat larger than 
Fvy, but for v > 0.15 the component P,, becomes small than Gy while cz remains the 
largest one. At solids fractions higher than about 0.5, Pyy becomes the largest 
component, and Pzx falls a bit below e,. Furthermore, the stresses obtained by Walton 
& Braun at Y = 0.6 are higher than the present ones as shown in figure 3. Their cv and cz are nearly equal in magnitude whereas the present ones differ by a factor of almost 
two. 

To help explain the peculiar behaviour of stresses at high concentrations found in the 
present simulations, some possible factors such as the dimensions of the control 
volume and the initial conditions were explored. More simulation results for stresses 
in simple shear flow of inelastic perfectly smooth spheres with e = 0.8 were obtained 
by using both high and low initial translational granular temperatures Ti and control 
volumes with initial 6 x 6 x 4,4 x 9 x 4 and 4 x 12 x 4 FCC arrays as shown in figure 4. 
The abrupt changes in stresses for control volumes with initial 4 x 9 x 4 and 4 x 12 x 4 
FCC arrays are found to occur at about u = 0.52, whereas those for a 6 x 6 x 4 FCC 
array take place at about 0.53. Thereafter the stresses increase monotonically with 
increasing v. Generally speaking, the stresses at v > 0.52 are found to depend only 
slightly upon the initial translational granular temperature Ti and the dimensions of 
the control volume with initial FCC particle-array. 

The flow field or control volume with an initial 4 x 9 x 4 FCC array is evenly divided 
into nine layers. The ensemble average of particle number density for each layer is 
computed for observation. At v = 0.52 the height of the control volume H equals 
8.267r which means that each layer has a thickness of 0.91%~. At is turns out, for 
Y 2 0.52 no particle crosses the top and bottom boundaries of the control volume and 
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the particle number density for each layer remains unchanged. This indicates the 
ordering of particles in layers, with each particle caged by its nearest neighbours. As 
a result, the correlation of velocities among particles is enhanced. This is reflected in 
the results for the shear stress pZy. Although pZu is non-zero for most cases, its 
magnitude is often a couple of orders of magnitude smaller than the major shear stress 
I&,. For v < 0.52, normally fluctuates with positive and negative values and 
changes from one layer to another. However, for v 2 0.52, Ey. becomes positive 
throughout the entire flow field even though its magnitude still remains relatively small. 
This shows that the particle velocities are correlated in the y- and z-directions in some 
fashion. Similar results are found for control volumes initially set up as 6 x 6 x 4 and 
4 x 12 x 4 FCC arrays. The ordering of particles in layers, the formation of high- 
density microstructures and the increase in correlation of particle velocities are believed 
to be the major factors causing the abrupt changes and reordering of stress components 
at some critical concentrations. 

In reality, there exists a natural geometric ‘critical’ point at v = 7c/6 or 0.5236; it 
represents the largest density in a simple cubic array in which layers of particles can 
move over one another unimpeded in the horizontal shearing plane. Above such a 
value, one might anticipate some kind of ‘discontinuity’ effect due to possible 
formation of microstructures of particles in the system. This is exactly what is observed 
in the present study. The macroscopic properties such as temperatures, particle spins 
and stresses at v close to 0.52 exhibit ‘jumps’ in values. Note that systems with v higher 
than 0.5326 are still shearable. This can be illustrated as follows. If we deform a small 
simple cubic array with v = 0.5236 into a parallelogram-based column by rotating two 
opposite sides 60” in the same direction, the solids fraction now becomes 0.6046. There 
can still be no resistance for particle layers moving over each other in the horizontal 
shearing plane since the column height remains an integer multiple of the particle 
diameter. The fact that the top and bottom periodic boundaries permit particles to 
travel back and forth brings about an additional degree of flexibility for shearing 
particles at solids fractions higher than 0.6046. As shown in figure 2, the highest solids 
fraction sheared in the present simulation is 0.65 for particles with e = 0.95. 

Hoover & Ree (1968) obtained similar behaviour in pressures in their molecular 
dynamics study of thermo-equilibrium (i.e. no mean shear) phase transition of smooth 
elastic hard spheres and hard disks at high concentrations. In the case of hard spheres, 
the critical solids fraction was found to be between 0.46 and 0.48. They attributed the 
sudden decrease in pressure to the process of phase transition whereby the ‘fluid phase’ 
changed into a ‘solid phase’. They investigated systems of 32, 108, 256 and 500 hard 
spheres and found that the dependence of properties on total particle number was not 
statistically significant. 

Similar abrupt changes in mean pressure were reported by Walton & Braun (1986b) 
in their computer simulations for simple shear flow of two-dimensional inelastic, 
frictional disks with e = 0.8 and ,u = 0.5 at high solids area fraction > 0.775. A solids 
area fraction of 0.7854 represents the largest density in a square packing at which 
strings of disks can overtake others unhindered in the streamwise direction. They used 
a ‘soft-disk’ collision model and the stresses were found to depend not only on particle 
concentrations but also on shear rates. Campbell & Brennen (1985) quantified the 
formation of microstructure in two-dimensional hard-disk Couette flows. Unfor- 
tunately, they studied systems with solids area fraction less than 0.775, and thus they 
did not observe any onset of stress jumps. 

It is worth mentioning that there exist various types of instability in large simple 
shear systems of particles with low coefficient of restitution at low to moderate solids 
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FIGURE 5. Stress ratio versus solids fraction for simple shear flow. Comparison of present results for 
smooth spheres (0, e = 0.6; 0, e = 0.8; D, e = 0.95) with predictions of Lun (1991) (-- --, 
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concentrations. Hopkins, Jenkins & Louge (1992) found that for low values of 
restitution coefficient and low mean solids fraction, the mean velocity gradient was 
highly nonlinear and the granular temperature was much higher in the dilute regions 
than in the dense ones. In a study of linear stability of unbounded simple shear flow 
based on a kinetic theory, Savage (1992) found that the ‘instability’ increases with 
decreasing coefficient of restitution, and that simulations using relatively small control 
volumes are likely to be ‘stable’ whereas large control volumes with large numbers of 
particles are more likely to be ‘unstable’. Hopkins & Louge (1991) reported the 
formation of inelastic microstructures in simple shear flows of disks with low coefficient 
of restitutions at low solids concentrations. Babic (1992) performed a kinetic theory 
analysis for the linear stability of two-dimensional simple shear of disks and reached 
similar conclusions to those of Savage (1992). These instability mechanisms are 
believed to be different from the high-density ones that are responsible for the abrupt 
variations in properties at solids fraction near 0.52 as observed in the present study. 

As mentioned earlier, the stresses at Y = 0.6 obtained by Walton & Braun (1986a) 
for smooth sphere with e = 0.8 are higher than the present ones as shown in figure 3. 
Walton & Braun used a soft-sphere collision model. The particles were first randomly 
distributed in a control volume and then moved into positions such that particle 
overlaps were eliminated before the actual simulation began. It seems possible that the 
randomness of the initial particle positions at such high solids fraction of 0.6 and the 
fact that the stresses were shear-rate dependent could cause the stresses to be higher 
than the present results. 

The variations of stress ratios for e = 0.6, 0.8 and 0.95 with solids fraction are 
plotted in figure 5. In general, there is good agreement between the present results and 
the predictions of Lun (1991). At v near 0.52, the stress ratios clearly show abrupt 
reductions in values. For v > 0.52, the stress ratio becomes rather insensitive to the 
increase of solids fraction. 

Figure 6 shqws comparisons between the present results and those of Campbell 
(1989) for rough inelastic spheres with e = 0.8 and ,4 = 0. Reasonable agreement 
between the two is found except at high solids fractions. By the way, the lowest solids 
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FIGURE 6. Non-dimensional (a) normal stresses and (h) shear stress versus solids fraction v for simple 
shear flow. Comparison of present results for spheres having e = 0.8 and p = 0 (0, er; 0, &,; 
D, cz; a> [<J) with predictions of Lun (1991) (solid curve) and results of Campbell (1989) (+, Pzz; 
0,  &; b, k ;  4, IQ). 

fraction simulated by Campbell was v = 0.001 instead of 0.01 as printed in his paper 
(personal communication). At v = 0.55, Campbell’s stresses are much higher than the 
present ones. The stress component was found to be the largest one followed by 4, 
and then &,: whereas the present results indicate that Cy is the largest component 
followed by P,, and ex. Besides this, it is not clear why the stresses at Y = 0.55 obtained 
by Campbell for spheres with e = 0.8 were in some cases higher than those for spheres 
with e = 1 .O (see figure 3 of Campbell’s paper). Similar anomalies can also be observed 
for particles with e = 0.4, 0.6 and 0.8 at v = 0.4, 0.45, 0.50 and 0.55 in his paper. Such 
irregularities are not seen in the present simulations nor in the theoretical predictions 
of Lun (1991). 

For realistic inelastic frictional particle collisions, the normal and tangential 
coefficients of restitution and the friction coefficient are intricately related. In order to 
study the effect of particle surface friction, we employ the information obtained from 
the experiments of Maw (1976) for steel spheres mentioned in $2. Inelastic particles 
with e = 0.93 and three different types of surface characteristics are simulated: namely, 
(i) perfectly smooth spheres with /3 = - 1, (ii) frictional steel spheres with Po = 0.4 and 
,u = 0.123, and (iii) spheres with infinite friction, i.e. p = 0. In figure 7, the simulation 
results for stresses are plotted together with the theoretical predictions of Lun (1991) 
and the experimental measurements obtained by Craig et al. (1986) in shearing carbon 
steel spheres at different solids concentrations and shear zone thickness, .H, inside an 
annular shear cell. 

Comparing the simulation results for perfectly smooth spheres with those of 
frictional spheres in figure 7, the stresses are found to decrease with increasing particle 
surface friction. The stresses for idealized particles with infinite friction are consistently 
lower than those for smooth spheres and frictional steel spheres. The reason is that a 
higher rate of energy dissipation is artificially incurred as the result of the elimination 
of post-collisional relative tangential velocities (or in other words the removal of part 
of the particle kinetic energy) in each binary collision of spheres with /3 = 0. 

In their simulations of simple shear flow of two-dimensional disks with e = 0.8, 
Walton & Braun (1986b) found that at solids area fraction > 0.25 the stresses for 
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FIGURE 7. Non-dimensional (a) normal stresses and (b)  shear stress versus solids fraction. 
Comparison of present results for spheres having e = 0.93 and (i) /3 = - 1, (0, Ex; 0, &,; b, tZ; 
4 l&l), (ii)P, = 0.4 andp = 0.123 (0, cz; 0, eV; D, tz; U, lFzVl), and (iii) P = 0 (+, Pxr; O,<,; 
B. Pzz: 4, lPzJ) with predictions of Lun (1991) (solid curves) and test data of Craig et d. (1986) 
(’, @, *, A, +, V for H / a  = 12.9, 11.07,9.23,7.38, 5.54, 3.7 and v,,, = 0.599, 0.601,0.603, 0.612, 
0.623, 0.652 respectively). 

shearing ‘soft disks’ with friction coefficient of p = 0.5 were consistently higher than 
those for perfectly smooth ones (p = 0). In other words, the stresses and granular 
temperatures were found to increase with increasing particle surface friction. This is 
contrary to the present simulation results and the predictions of the kinetic theories of 
Lun & Savage (1987) and Lun (1991) for hard spheres. Realistically, it is not obvious 
how the stresses and temperatures could increase in the case where supposedly higher 
rates of energy dissipation were incurred due to the presence of particle surface friction 
at the same shear rate. However, if the particles were idealized as perfectly or nearly 
perfectly rough, i.e. p -  1, then as shown by Lun & Savage (1987) it would be possible 
for the stresses at concentrations where the collisional stresses are dominant to be 
higher than those for perfectly smooth spheres with identical e. 

In general, the predictions of Lun (1991) compare favourably with the present 
simulation results, as shown in figures 6 and 7. The theory of Lun is expected to be best 
suited to systems of spheres with e close to unity and p close to - 1 where the rate of 
energy dissipation is small. Fortuitously, the theory yields reasonable predictions even 
for the case of p = 0 (figure 6). As mentioned previously. the coefficient of /3 in the 
kinetic theory of Lun represents a mean value averaged over the entire range of sticking 
and sliding contacts. Using /3 = -0.5, the theory seems to predict stresses that are 
compatible with the simulation results for frictional steel spheres with Po = 0.4 and 
p = 0.123 (figure 7). 

Craig et at. (1986) carried out annular shear cell experiments using carbon steel 
spheres at high concentrations in the range of 0.521 < v < 0.559. The mean values of 
the shear-layer thickness and the solids fractions at maximum closest packing for each 
H tested are given in the caption of figure 7. The stresses measured by Craig et ul. were 
found to increase sharply with minor increase in solids fraction, and decrease with 
decreasing H ,  as shown in figure 7. Such variations of stresses could be caused by a 
number of factors such as finite-size effects of the sidewalls in the shearing zone, slip 
at the top and bottom solid boundaries, increase in correlations between particle 
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velocities, and the ‘layering’ effects of particles. Savage (1992) used numerical 
simulation to study the effects of shear-layer thickness on stresses developed in Couette 
flow of an assembly of idealized smooth spheres and found similar reductions in 
stresses with decreasing H at solids concentrations even much lower than those in 
experiments. Further study in this area is required for inelastic frictional spheres. In 
passing, it is necessary to point out that Craig et al. did not determine the coefficient 
of restitution and friction coefficient for the carbon-steel spheres tested. The, material 
properties of the carbon-steel spheres could differ from those of the steel ball bearings 
used by Maw (1976) and the present simulations. 

Abrupt changes in stresses similar to those observed previously in figure 3 for 
smooth spheres with e = 0.8 at v z 0.52 are also found in the present simulation results 
for the three types of particles with e = 0.93, as shown in figure 7. The dimensions of 
the control volume and the initial translational granular temperature are varied, as was 
done previously for the case of frictional steel spheres with e = 0.93, p, = 0.4 and 
p = 0.123. The critical solids fraction is found to occur first at about 0.50 instead of 0.52 
as in the previous case. The difference in critical v is probably caused by the additional 
degrees of freedom of interactions between particles through rotational motion as a 
result of surface friction. Other than that, the stresses are found to behave qualitatively 
similarly to those shown in figure 4 for smooth spheres with e = 0.8; thus they are not 
presented here. 

There is evidence for stress reductions at some critical high solids fractions in some 
experiments of Savage & Sayed (1984); for example, in tests of polystyrene beads 
(PSI, 1.1 mm mean diameter) and glass beads (1.8 mm mean diameter) at v = 0.50. 
The phenomenon is best seen in figures 2 and 4 of Lun (1991). Lun plotted the 
experimental results for stresses using only those data that were recorded at the highest 
shear rates for each solids fraction of material tested. This minimized the influence of 
quasi-static effects which can occur at low shearing rates of bulk materials. 

No abrupt changes in stresses were found in the data of Craig et al. (1986). The 
reason is that the range of 0.521 < v < 0.559 tested in the experiments was beyond the 
critical solids fraction of 0.50. For a similar reason, the stresses presented by Hanes & 
Inman (1985) in shearing glass beads of 1.85 mm mean diameter show no abrupt 
variations because the largest solids fraction tested was 0.49. Hanes & Inman also 
tested 1.1 mm mean diameter glass beads in the range of 0.37 d 2i ,< 0.56; however the 
stresses behaved rather differently from all other theoretical, numerical and 
experimental results. 

In conjunction with stress results shown in figure 7, the stress ratio IP&P,, for 
inelastic frictional spheres is plotted versus solids fraction in figure 8. In general, there 
is good agreement between the predictions of Lun (1991) and the present results. The 
variations of stress ratios for frictional spheres (figure 8) with solids fraction are similar 
to those for smooth spheres (figure 5). 

Some interesting auxiliary information that can be obtained from the simulations 
concerns for example angular momentum flux f ,  ratio of rotational temperature T, to 
translational temperature T ,  mean particle spin wo, ratio of the number of sticking 
contacts to the total number of collisions N,, and mean free path A. 

The angular momentum flux L,  sometimes called the couple stresses, is composed of 
the sum of a kinetic part and a collisional transfer part. The results for shearing 
frictional steel spheres with e = 0.93, ,bo = 0.4 and ,U = 0.123 at different concentrations 
show that the couple stresses are in general at least a couple of orders of magnitude 
smaller than the normal and shear stresses and for all practical purposes they may be 
neglected. This finding supports the results obtained earlier by Lun (1991) that the 
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FIGURE 8. Stress ratio versus solids fraction. Comparison of present results for spheres having 
e = 0.93 (0, B = - 1 ;  0, Po = 0.4 and /I ,  = 0.123; @, /3 = 0) with predictions of Lun (1991) (-, 
p=-1'---- , p = -0.5; ----, = 0) and data of Craig et al. (1986; symbols are 
same as those in figure 7 caption). 
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FIGURE 9. Variation of granular temperature ratio with solids fraction u for the case of simple shear. 
Comparison of present results for frictional spheres having e = 0.93 (0, 8, = 0.4 and ,u = 0.123; 
4, p = 0) with predictions of Lun (1991) (-- , p = -0.5; ---, B = 0). 

couple stress tensor is identically zero in the kinetic theory of the first-order gradient 
of macroscopic flow variables for systems of slightly inelastic, slightly rough spheres. 
In a polar fluid, the couple stresses are functions of gradients of particle spin. In the 
present case of simple shear flow, where the particle spin is practically uniform across 
the flow field, it is not surprising to see that the couple stresses are essentially zero. 

According to the kinetic theory of Lun the ratio of rotational temperature to 
translational temperature, T,/ T ,  is a function of tangential coefficient of restitution 
only and independent of solids concentration. In figure 9, the simulation results for 
G/T  in the simple shear flow of steel spheres with e = 0.93, ,4, = 0.4 and p = 0.123 
exhibit only slight variation with v while those for spheres with e = 0.93 and p = 0 
show a relatively more pronounced dependence on v. In the case of ,4 = 0, both the 
present results and the theoretical predictions of Lun show reasonable agreement. 
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FIGURE 10. Variation of non-dimensional mean spin with solids fraction v for the case of simple shear. 
Comparison of present results for frictional spheres having e = 0.93 (0, Po = 0.4 and ,u = 0.123: 
4, p = 0) with prediction of Lun (1991) (solid curve). 

0 0.2 0.4 0.6 
V 

FIGURE 1 1 .  Ratio of number of sticking contacts to total number of collisions per particle N ,  
versus solids fraction for spheres with e = 0.93, Po = 0.4 and /L = 0.123. 

Since a constant p = -0.5 was used in the kinetic theory of Lun, the theoretical 
predictions for T / q  are somewhat different to the present simulation results obtained 
by using a more realistic collision model. 

Figure 10 shows the variation of the non-dimensional mean particle spin with solids 
fraction. The theory of Lun (1991) predicts that the mean spin for simple shear flow 
is one half of the vorticity, i.e. w, = - iV  x u. In terms of the present coordinate 
system, the non-dimensional mean spin can be written as -w,,/(du/dy) = 0.5. As 
shown in figure 10, the theoretical predictions compare favourably with the present 
simulation results except at extreme values of v where the anisotropy in temperature 
distributions and the particle layering effects play important roles. 

It is interesting to see that the ratio of the number of sticking contacts to the total 
number of collisions per particle N, (for the simple shear flow of inelastic frictional 
spheres with e = 0.93, Po = 0.4 and Y = 0.123) is independent of the solids 
concentration, as shown in figure 1 I, whereas intuition may say otherwise. The number 
of sticking contacts constitutes approximately 20 Yo of the total number of collisions 
per particle while the other 80% are sliding contacts. Note that N,  represents a ratio 
averaged over all possible orientations of particle collisions. Although the distribution 
of contact angles changes with solids fraction, the ratio can possibly remain unaffected. 

The mean free path h represents the mean free flight distance traversed by a particle 
between successive collisions and it may be defined as the ratio of the total distance 
travelled by a particle to the total number of its collisions within a certain period of 
time. As shown in figure 12 the variations of h for perfectly smooth spheres with 
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FIGURE 12. Variation of non-dimensional mean free path with solids fraction v for the case of simple 
shear flow; D, perfectly smooth spheres with e = 0.8; 0, frictional steel spheres with e = 0.93, 
#I, = 0.4 and ,u = 0.123. 

e = 0.8 are almost identical to those for spheres with e = 0.93, Po = 0.4 and ,u = 0.123. 
This signifies that the mean free path is basically independent of material properties 
such as the coefficient of restitution and the friction coefficient. This is not surprising 
because the bulk material is simply composed of idealized hard spheres with no 
potential forces such as electrostatic forces; thus the mean free path is mainly a 
function of solids concentration. 

5.  Conclusion 
The present research utilizes the approach of molecular-dynamics-type computer 

simulations for the simple shear flow of granular material inside a control volume. Real 
collisions of inelastic frictional spheres are imitated by a simple sticking-sliding hard- 
sphere collision model. Such an instantaneous hard-sphere binary collision model 
breaks down at high bulk concentrations where simultaneous multiple-particle 
contacts are frequent. Nevertheless, valuable information about flow properties can 
still be gained by this approach for low to moderately high solids fractions. 

After the flow has reach a steady state, macroscopic flow properties such as stresses, 
granular temperatures and mean free path are obtained by means of ensemble averages. 
The stresses are found to be anisotropic and decrease with decreasing coefficient of 
restitution and increasing friction coefficient. Variations in initial conditions such as 
using high and low granular temperatures and different sizes of control volume based 
on initial FCC arrays have no significant effects on the results. Generally speaking, the 
present simulation is in favourable agreement with previous theoretical, numerical and 
experimental investigations. At high solids fraction, above about 0.50, a critical 
concentration is found to exist where the majority of the flow properties such as stresses 
and mean particle spin experience abrupt changes. The critical solids fraction for 
simple shear flows of smooth inelastic spheres occurs at about 0.52 whereas that for 
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frictional inelastic spheres occurs at about 0.50. The layering effects of particles, the 
formation of high-density microstructures and the increase in correlation of particle 
velocities are major factors in causing the sudden variations. 

Future studies using computer simulations with different initial regular particle 
packing procedures and random distributions at high solids fractions will be beneficial 
for a better understanding of the flow behaviour at high solids concentrations. 
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